The Problem of Antibiotic - Resistant and Antibiotic - Tolerant Bacteria

Prof. Prof. h.c. Dr. Wolfgang Schumann
University of Bayreuth
Institute of Genetics
Deaths per Year by Bacterial Infections at a Hospital (Nosocomial Infections)

Germany: \(\sim \frac{1700}{82\,000\,000} = 0.0020\%\)

EU: \(\sim \frac{25\,000}{700\,000\,000} = 0.0025\%\)

USA: \(\sim \frac{90\,000}{310\,000\,000} = 0.0270\%\)

Estimation:
If no new antibiotics till 2050 \(\rightarrow >10.000.000\) deaths per year world wide
Development of Chemo-Therapeutic Compounds

<table>
<thead>
<tr>
<th>Year</th>
<th>Inventor/Invention</th>
</tr>
</thead>
<tbody>
<tr>
<td>1863</td>
<td>Antoine Béchamp: Arsenic compounds against Trypanosoma</td>
</tr>
<tr>
<td>1906</td>
<td>Paul Ehrlich: Salvarsan against Treponema pallidum (syphilis)</td>
</tr>
<tr>
<td>1930th</td>
<td>Gerhard Domagk: Sulfonamides (Protosil)</td>
</tr>
<tr>
<td>1928</td>
<td>Alexander Fleming: Penicillin</td>
</tr>
<tr>
<td></td>
<td>Production started in 1939</td>
</tr>
<tr>
<td></td>
<td>since 1950 additional antibiotics</td>
</tr>
</tbody>
</table>
Programme

1. Discovery of penicillin
2. Action of important antibiotics and resistance
3. Persister cells: Toxin-antitoxin systems
4. Mechanisms of transfer of resistance genes
5. Strategies to eliminate antibiotic-resistant and -tolerant bacteria
 4.1 Development of new antibiotics
 4.2 Activation of a species-specific toxin
 4.3 Use of bacterial viruses
 4.4 Use of peptides
 4.5 The perfect antibiotic
5. Summary
Programme

1. Discovery of penicillin
2. Action of important antibiotics and resistance
3. Persister cells: Toxin-antitoxin systems
4. Mechanisms of transfer of resistance genes
5. Strategies to eliminate antibiotic-resistant and -tolerant bacteria

4.1 Development of new antibiotics
4.2 Activation of a species-specific toxin
4.3 Use of bacterial viruses
4.4 Use of peptides
4.5 The perfect antibiotic
5. Summary
Discovery of Penicillin in 1928

Sir Alexander Fleming
1881 – 1955

Nobel Price of Physiology and Medicine 1945

Bacteria can become resistant!
Penicillium chrysogenum (fungus): Producer of penicillin
E. Chain and Howard Florey: Technical production of penicillin
1941 First treatment of a patient
Lechuguilla Cave in New Mexico

~ 4 million years old bacteria; some resistant against 14 different antibiotics!
Programme

1. Discovery of penicillin

2. Action of important antibiotics and resistance

3. Persister cells: Toxin-antitoxin systems

4. Mechanisms of transfer of resistance genes

5. Strategies to eliminate antibiotic-resistant and -tolerant bacteria

4.1 Development of new antibiotics

4.2 Activation of a species-specific toxin

4.3 Use of bacterial viruses

4.4 Use of peptides

4.5 The perfect antibiotic

5. Summary
Action of Important Antibiotics

1. Inhibition of DNA replication
2. Inhibition of transcription
3. Inhibition of protein synthesis = translation
4. Inhibition of cell wall synthesis
Resistance Mechanisms

Three different resistance mechanisms have been described:

1. Inactivation or destruction of the antibiotics
2. Altered target proteins
3. Efflux of the antibiotics out of the cell
Inactivation of the Antibiotic, Example 1

Example: Beta-lactamases

Cleavage of the ring
Inactivation of the Antibiotic, Example 2

Example: Chloramphenicol-Acetyltransferase

Acetylation of chloramphenicol
Alteration of the Target Molecules by a Mutation

Target molecule = Protein

Protein alteration by a mutation in the corresponding gene coding for the protein

- Arginine – Proline – Tyrosine – Alanine – Lysine -
- Arginine – **Alanine** – Tyrosine – Alanine – Lysine -

Proline: CCA
Alanine: GCA
Tetracycline resistant cells contain a protein located in the inner membrane (TetA) pumping out the antibiotic.
Programme

1. Discovery of penicillin
2. Action of important antibiotics and resistance
3. **Persistor cells: Toxin-antitoxin systems**
4. Mechanisms of transfer of resistance genes
5. Strategies to eliminate antibiotic-resistant and -tolerant bacteria
 4.1 Development of new antibiotics
 4.2 Activation of a species-specific toxin
 4.3 Use of bacterial viruses
 4.4 Use of peptides
 4.5 The perfect antibiotic
5. Summary
Discovery of Persister Cells

Observation in 1944 by Joseph Bigger:
1. About 10^9 *Staphylococcus aureus* cells + penicillin \rightarrow a very few cells survived
2. Growth of these cells to about 10^9, + penicillin \rightarrow again, only a few cells survived
3. Experiment repeated several times \rightarrow always a few cells survived

Hypothesis: A few cells survive since they stop metabolism \rightarrow **persister** cells
Molecular Basis of Persistence

Components:
Toxin and Antitoxin = TA module
Antitoxin neutralizes the toxin
Destroy the antitoxin \rightarrow Toxin acts bacteriostatic or bactericidal

- Degradation or stop of synthesis
- Binding to or destroy of an essential molecule
Programme

1. Discovery of penicillin
2. Action of important antibiotics and resistance
3. Persister cells: Toxin-antitoxin systems
4. **Mechanisms of transfer of resistance genes**
5. Strategies to eliminate antibiotic-resistant and-tolerant bacteria

4.1 Development of new antibiotics
4.2 Activation of a species-specific toxin
4.3 Use of bacterial viruses
4.4 Use of peptides
4.5 The perfect antibiotic
5. Summary
Transfer of Antibiotics Resistant Genes to Other Cells

Five different mechanisms have been described:

1. Transformation
2. Transduction
3. Conjugation
4. Fusion of membrane vesicles
5. Nanotubes
Conjugation – Transduction - Transformation

- Conjugation: 1946
- Transduction: 1952
- Transformation: 1944
Fusion of Membrane Vesicles

Membrane vesicles can contain DNA, e.g. plasmids

They can fuse with cells of the same or of different species
Intercellular Nanotubes: 2011

Transfer of proteins, mRNA and DNA
Programme

1. Discovery of penicillin
2. Action of important antibiotics and resistance
3. Persister cells: Toxin-antitoxin systems
4. Mechanisms of transfer of resistance genes
5. Strategies to eliminate antibiotic-resistant and -tolerant bacteria

4.1 Development of new antibiotics
4.2 Activation of a species-specific toxin
4.3 Use of bacterial viruses
4.4 Use of peptides
4.5 The perfect antibiotic
5. Summary
Development of New Antibiotics = Reserve-Antibiotics

Examples:
1. Carbapenene: Beta-lactame; cell wall synthesis
2. Ciprofloaxacine: Synthetic antibiotic; DNA-synthesis
3. Tigecycline: Derivative of tetracycline
4. Linezolid: Synthetic antibiotic; protein synthesis
5. Tedizolid: Synthetic antibiotic; protein-synthesis
Programme

1. Discovery of penicillin
2. Action of important antibiotics and resistance
3. Persister cells: Toxin-antitoxin systems
4. Mechanisms of transfer of resistance genes
5. Strategies to eliminate antibiotic-resistant and -tolerant bacteria
 4.1 Development of new antibiotics
 4.2 Activation of a species-specific toxin
 4.3 Use of bacterial viruses
 4.4 Use of peptides
 4.5 The perfect antibiotic
5. Summary
Addition of a Substance Causing Dissociation of the AT Complex

Addition of the substance:
- Causes dissociation of A and T
- Prevents formation of the AT-complexes
⇒ Toxin causes **killing** (bactericidal) or **stop of growth** (bacteriostatic) of the bacterial cell
To Prevent Formation of the AT-Complex; Antitoxin = RNA

Principle: Antitoxin interacts with the mRNA of the toxin and prevents translation.

Programme

1. Discovery of penicillin
2. Action of important antibiotics and resistance
3. Persister cells: Toxin-antitoxin systems
4. Mechanisms of transfer of resistance genes
5. Strategies to eliminate antibiotic-resistant and -tolerant bacteria

4.1 Development of new antibiotics
4.2 Activation of a species-specific toxin
4.3 Use of bacterial viruses
4.4 Use of peptides
4.5 The perfect antibiotic
5. Summary
Discovery of Bacterial Viruses (= Bacteriophages = Phages)

Phages have been discovered by two scientists independent of each other:
1. Frederick Twort
2. Félix d’Herelle
The English Bacteriologist Frederick Twort

Discovered phages in 1915

FW Twort (1915) Lancet: 1241-1243
The Canadian Microbiologist Félix d`Herelle

Discovered phages in 1917 as microbes able to kill bacteria

Developed the phage therapy

F d`Herelle (1917) Comptes Rendues Hebdomadaires des Seances de L`academie des Sciences: 373-375
Phage Therapy

Félix d‘Herelle suggested to use phages to kill pathogenic bacteria: Experiments were carried out in Egypt and in Thailand.

1923: George Eliava founded the Eliava Institute in Tbilisi, Georgia.

2018: Different companies worldwide try to establish a phage therapy.
Programme

1. Discovery of penicillin
2. Action of important antibiotics and resistance
3. Persister cells: Toxin-antitoxin systems
4. Mechanisms of transfer of resistance genes
 4.1 Development of new antibiotics
 4.2 Activation of a species-specific toxin
 4.3 Use of bacterial viruses
 4.4 Use of peptides
 4.5 The perfect antibiotic
5. Summary
Use of Small Anti-Bacterial Peptides

Properties:

• Small (6 – 100 amino acids) positively charged amphipathic molecules

• Synthesized by human immune, skin and mucous membrane cells (our immune innate system)
Published Applications

1. **Nisin**: Produced by *Lactococcus lactis*; inhibits growth of many Gram-positive bacteria added to food

2. **D-9-mer**: synthetic peptide; active against MRSA (*Methicilline-Resistant Staphylococcus Aureus*) und *P. aeruginosa*
The Peptide SAAP-148, Part 1

• Peptide LL-37: Immune cells, 37 amino acids
• shortened to 24 amino acids and some of them exchanged

Val-Ala-Leu-Iso-Arg-Ala-Asp-Val-His-
Val-Ala-His-Iso-Arg-Ala-Lys-Val-His-

• Peptide SAAR-148 effective against multiresistant Staphylococci, Enterococci and Pseudomonas

The Peptide SAAP-148, Part 2

- Active against persister cells
- Applications: Infections of the skin, infected burns

Therapy in the interior of our body:

To develop specialized active substance **capsules**

First clinical studies started at the beginning of 2018
Programme

1. Discovery of penicillin
2. Action of important antibiotics and resistance
3. Persister cells: Toxin-antitoxin systems
4. Mechanisms of transfer of resistance genes
5. Strategies to eliminate antibiotic-resistant and -tolerant bacteria

4.1 Development of new antibiotics
4.2 Activation of a species-specific toxin
4.3 Use of bacterial viruses
4.4 Use of peptides
4.5 The perfect antibiotic

5. Summary
The Perfect „Antibiotic“

The perfect „antibiotic“ recognizes three different essential proteins.

The probability that the three different genes coding for three different proteins mutate at the same time in a single cell is extremely unlikely.
The Perfect Antibiotic Binds on Three Different Essential Proteins

Gene A Gene B Gene C

Protein A Protein B Protein C

Mutation rate: $10^{-6} - 10^{-7}$ per gene and generation

Aim: Identification of an identical protein domain in three different essential proteins
Protein Domains

Examples:
Three proteins B, C and D each consist of two domains, and the A domain is identical in all three of them.
Programme

1. Discovery of penicillin
2. Action of important antibiotics and resistance
3. Persister cells: Toxin-antitoxin systems
4. Mechanisms of transfer of resistance genes
5. Strategies to eliminate antibiotic-resistant and -tolerant bacteria

4.1 Development of new antibiotics
4.2 Activation of a species-specific toxin
4.3 Use of bacterial viruses
4.4 Use of peptides
4.5 The perfect antibiotic

5. Summary
Summary, Part 1

1. Penicillin has been detected in 1928 per chance.

2. The treatment of patients started in 1941 and a few years later, the first penicillin-resistant patients have been described.

3. Penicillin-tolerant cells have been described in 1944 for the first time and called persister cells.

4. The tolerance is based on a toxin-antitoxin system where the antitoxin inhibits the toxin.
5. After removal of the antitoxin, the toxin causes cell death or stop of growth.

6. I discussed five different possibilities to kill antibiotic-resistant and –tolerant cells.

7. The partially artificial peptide SAAP-148 rises hopes. Will additional be created?
Thank you for your attention!

Questions?